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Origin of coherent structures in a discrete chaotic medium
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Using as an example a large lattice of locally interacting Hindmarsh-Rose chaotic neurons, we disclose the
origin of ordered structures in a discrete nonequilibrium medium with fast and slow chaotic oscillations. The
origin of the ordering mechanism is related to the appearance of a periodic average dynamics in the group of
chaotic neurons whose individual slow activity is significantly synchronized by the group mean field. Intro-
ducing the concept of a ‘‘coarse grain’’ as a cluster of neuron elements with periodic averaged behavior allows
consideration of the dynamics of a medium composed of these clusters. A study of this medium reveals
spatially ordered patterns in the periodic and slow dynamics of the coarse grains that are controlled by the
average intensity of the fast chaotic pulsation.@S1063-651X~99!50708-3#

PACS number~s!: 05.45.2a, 47.54.1r, 95.10.Fh, 84.35.1i
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The emergence of spatiotemporal ordered or cohe
structures in nonequilibrium media, or in large assemblies
elements with nonregular behavior, is one of the oldest
most intriguing problems in physics, chemistry, and biolog
Perhaps the most lucid formulation of the problem is t
outlined by fluid dynamicists to explain the observation
large-scale structures in turbulent flows@1#. Over the last
decade, neurobiologists have become involved in the p
lem, particularly after the discovery of spiral patterns in t
cortex of animals and humans@2,3#.

In this paper we are concerned with regular structu
generated by nonregular elements in a diffusive med
characterized by two distinct time~not space! scales. The
origin of the ordering phenomena in different nonequilibriu
media ~or systems! may have some universal features, d
spite the inherent diversity of specific mechanisms resp
sible for the formation of the patterns. As many examp
indicate, the key feature of this universality is the existen
of two or more time or/and space scales in the activity of
media @4–7#. It is therefore reasonable to investigate th
ordering phenomenon using a simple, tested model of a t
time-scale nonequilibrium medium. We report here the t
oretical and numerical study of a specific model that d
closes a possible mechanism responsible for generating
coherent structures.

Let us consider a lattice ofN different chaotic generator
electrically coupled to their nearest neighbors. Since we w
to investigate the cooperative behavior of an assembly
chaotic generators with fast and slow oscillations, a con
nient element of the ‘‘medium’’ is the Hindmarsh-Rose~HR!
@8–10# model neuron. A two-dimensional~2D! lattice com-
posed of such HR elements may be described by the e
tions

dxi

dt
5yi1axi

22xi
32zi1ei2g(

j
~xi2xj !, ~1!

dyi

dt
5b2cxi

22yi , ~2!
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dzi

dt
52zi1s~xi1d!, ~3!

where the indexj runs over the four nearest neighbors of u
i, the constantsa, b, c, d, s, ei , andm are model param-
eters (m!1 being responsible for the existence of the slo
dynamics!, and g is the homogeneous coupling streng
among neighbor units. Computer simulations of tw
dimensional square lattices built up with heterogeneous
ments~each unit has a random value for the parameterei)
such as those described by Eqs.~1!–~3! indicate that coop-
erative behavior among the elements is able to prod
large-scale coherent structures with slow periodic osci
tions, despite the presence of different and chaotic elem
@7#. We defineS as the number of neurons that build up t
characteristic spatial shape of the structure, and the struc
is considered to be of large scale whenS@1.

In order to understand the origin of these large-scale
herent structures, we investigated the cooperative beha
of a group~cluster! of such chaotic elements. We found
striking phenomenon: the regularization of the average ac
ity when the size of this cluster is sufficiently large. In co
trast, small groups of neurons clearly exhibit three differe
kinds of chaotic dynamics depending on the value of
diffusive couplingg: ~i! developed chaos whose dimensio
increases with the number of chaotic elements for a sm
value of the coupling,~ii ! chaotic synchronization of the
slow oscillation ~bursts! for moderate coupling, and~iii !
complete chaotic synchronization~both spikes and bursts!
for strong coupling@11,12#.

The cluster with average periodic~in time! behavior will
be called acoarse grain. We suppose that the regular sp
tiotemporal patterns observed in our computer simulati
are strongly related to the emergence of many interac
coarse grains inside the lattice for a moderate value of
coupling. The cooperative behavior of the diffusive
coupled coarse grains~periodic generators in our case! pro-
duce many different regular spatiotemporal patterns sim
to those obtained with the discrete analog of the comp
R1130 © 1999 The American Physical Society
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FIG. 1. Left: evolution ofR(t;g,M ) as defined in the text for three different coupling strengths (g) in a square network of 10310 HR
elements computed for parameter valuesa53, b51, c55, d51.6, ei53.28160.05, m50.0021, ands54 ~units are dimensionless in thi
model!. Right: average activityX in this network for the same values ofg.
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Ginzburg-Landau model or the Fitzhugh-Nagumo model.
analyze this behavior, we need an equation that describe
average dynamics of a single coarse grain.

We can describe the coarse-grain dynamics using the v
ables

X~ t !5
1

M (
i 51

M

xi~ t !5^xi&CG , Y~ t !5^yi&CG ,

Z~ t !5^zi&CG ,

whereM is the number of elements in the cluster. An a
proximate equation for the dynamics ofX,Y,Z can be ob-
tained by substituting

xi5X~ t !1j i~ t;g,M !, yi~ t !5Y~ t !1h i~ t;g,M !,

zi~ t !5Z~ t !1z i~ t;g,M !,

in Eqs. ~1!–~3!, which yields ~ignoring higher order terms
thanj i

2):

dX

dt
5Y1aX21ar~ t;g,M !2X323Xr~ t;g,M !2Z1e,

~4!

dY

dt
52cX22Y2@cr~ t;g,M !2b#, ~5!

1

m

dZ

dt
52Z1s~X1d!, ~6!

wheree5^ei&CG . We have taken into account from the de
nition of X, Y, andZ that ^j i(t)&CG5^h i(t)&CG5^z i(t)&CG
50 and, consequently, the only function left to be det
mined isr (t;g,M )5^j i

2&CG .
In order to describe the slow dynamics, we need to m

a reasonable assumption about the nonautonomous ter
the right-hand side of Eq.~4!. Sincer (t;g,M ) varies much
more rapidly with time than the slow coarse-grain oscil
tion, we suppose that the dynamics of a coarse grain dep
o
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on the time-averaged value ofr (t;g,M ) defined as
R(t;g,M )5(1/t)*0

t r (t8)dt8 with t r!t,T, where t r is the
characteristic time scale of the fast pulsationr (t;g,M ) ~spik-
ing behavior! andT is the characteristic time scale ofX. In
the system~4!–~6! we now replacer (t;g,M ) with the slow
function of time R(t;g,M ) which also depends on th
strength of the diffusive coupling between elements and
size of the coarse grain. If our hypothesis is correct,R
'constÞ0 for small values ofg andR'0 for large values
of the coupling; for moderate values of the coupling, pred
tion of the behavior ofR is not intuitively clear. The com-
puter simulations shown in Fig. 1, however, indicate that
particular moderate values ofg, the behavior ofR becomes
periodic. Thisg-dependent behavior ofR infers that the av-
eraged dynamicsX also will change as the coupling param
eter is varied.

We can investigate the appearance of the periodic ave
behavior using Eqs.~4!–~6! with r (t;g,M ) replaced by
R(t;g,M ), the latter being a constant or a periodic functi
depending on the magnitude of the coupling being cons
ered. Typical phase portraits and the corresponding time
ries of the full dynamical system forR are presented in Fig
2. For sufficiently smallg, R is nearly constant, taking on
values in the range 0.4–0.5 and only a single stable fi
point appears, one corresponding to steady-state behavi
the cluster. ForR,Rcrit (g.gcrit), this fixed point be-
comes unstable and the limit cycle in the 3D phase spac
the average coarse-grain system undergoes a supercr
and sharp Andronof-Hopf bifurcation to a stable fixed poi
Strictly speaking, at the moment of this bifurcation,R be-
comes a periodic function of time~see Fig. 1!. Nevertheless,
close to the bifurcation point the influence of this periodic
on the existence of the limit cycle is not important. Th
direct calculations given in Fig. 2 confirm this supposition

The dynamical mechanism of the ordering averaged
havior of the coarse grain relies on the synchronization
regularization of the activity of theM units inside the grain.
The degree of synchronization of a single neuron with
average activity of the whole grain depends on the stren
of the coupling, as one can see on the left in Fig. 3. In
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FIG. 2. Phase space portraits~top row! and correspondingX time series~bottom row! of a single coarse-grain element for the paramet
given in Fig. 1:R50.47, a stable fixed point;R5 f (t)5$0.251(n51@(21)n21/2np#sin(2nvt)%$0.51(n51@2/(2n21)p#sin@(2n21)vt#%
@v'0.013, this periodic function fits the shape ofR(t;g,M ) shown in Fig. 1 forg50.1#, a limit cycle; andR50.0007, a strange attracto
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case of regular behavior (g'0.1), the single neuron activity
is highly synchronized with the periodic mean field. Forg
'0.05, the synchronization between mean field and in
vidual behavior is absent and one observes spatiotemp
disorder. Thus, for a moderate value ofg (g'0.1 using the
model parameters described in the figures! the coarse grain
behaves as a single element with periodic slow dynamic

Now we can explain the existence of large (S@1) regular
spatiotemporal patterns in discrete diffusive media. First,
existence of such structures is impossible in weakly diffus
media because the local oscillations of neighboring elem
are not correlated for small couplingsg and the mean field o
the coarse grains becomes homogeneous and stable. Th
rect computation of the Kolmogorov-Sinai entropy presen
at the right in Fig. 3 confirms that the level of spatial
homogeneous chaos increases asg˜g0!1. Note that this
entropy is large forg50.1 since the Lyapunov exponen
were calculated from the vector field@13#, i.e., without fil-
tering the fast spikes, which are highly chaotic in this
gime.

For moderate values of the coupling, the coarse-grain
sembly should exhibit regular spatiotemporal patterns.
confirmation of this conjecture, we have checked the beh
ior of a medium consisting of coarse-grain units with slo
periodic behavior. The description of this medium is ana
gous to that given by the network of HR units where
(xi ,yi ,zi) are replaced by (Xi ,Yi ,Zi!. We are looking for
i-
ral
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patterns in the coarse grain network that have the same s
scale~relative to the size of the lattice! as the pattern in the
original HR lattice. Thus, the pattern in the coarse-grain
tice should have identical structure but with a smaller ab
lute size. Since both patterns~on the original HR lattice and
the coarse-grain lattice! have the same time scale, we can s
that the speed of front propagation in the HR lattice must
larger than for the coarse-grain lattice. The propagat
speed of the front increases together with the value of
diffusion. One concludes, based on this scaling argum
that a coarse-grain pattern with the same relative size as
original may be found only in the case where the coar
grain lattice couplingG is smaller than the diffusive coupling
g in the original HR network~The exact relationship betwee
g and G is beyond the scope of this Rapid Communicati
and will be reported elsewhere!. Verification of this conclu-
sion is given by the sequence of patterns obtained for
square network of coarse-grain units shown in Fig. 4. Th
patterns~obtained forG50.5) given in the bottom row of
Fig. 4 have the same topology and are clearly reminiscen
those produced by the original heterogeneous lattice of c
otic HR elements~for g51.5) displayed in the top row o
Fig. 4. Periodic boundary conditions were applied to bo
HR and coarse-grain networks in all the simulations d
scribed in this paper. The topology of the patterns was
affected when we used fixed boundary conditions. We h
also observed the same behavior in hexagonal lattices~both
h

FIG. 3. Left: activity of a single HR unitxi vs the average activityX ~defined in the text! for two values of the couplingg. Right:

Kolmogorov-Sinai entropy~sum of the positive Lyapunov exponents obtained from the vector field! as a function of the coupling strengt
g in a network of 737 HR elements.
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FIG. 4. Top row: evolution of a periodic spatiotemporal pattern observed in a network of 1003100 HR elements; parameter values a
those specified in Fig. 1, withg51.5. Bottom row: Periodic spatiotemporal patterns observed in a network of 30330 coarse-grain element
computed forR50.23 andG50.5 ~the rest of the parameters have the same values used in the HR lattice!. The value ofR is close to the
bifurcation point and the individual coarse-grain dynamics is periodic.
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coarse grains and HR networks!. In this case, the strength o
the coupling has to be reduced to take into account the la
number~six! of nearest neighbors.

We conclude that the formation of large-scale coher
structures in nonequilibrium media consisting of discrete
chaotic elements with fast and slow oscillations exhibits t
key features. The first is the regularization phenomena in
clusters of chaotic elements, i.e., the coarse grains. T
regularization of the behavior is the result of the action of
averaged activity of fast pulsations in the slow coarse-gr
dynamics. The second feature is the instability of the hom
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geneous oscillation modes in a media considered to b
coarse-grain lattice. Also, it is important to remind the rea
that the coarse grains are a temporal assembly of neu
whose relaxation time is smaller than the relaxation time
the coherent structures.
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